OnScale Blog

Our blog covers tips for using OnScale, new features and developments, and upcoming events and webinars.  Subscribe and get the latest posts in your inbox.

Cyprien Rusu, Director of Engineering for Asia at OnScale

Cyprien Rusu, Director of Engineering for Asia at OnScale

Cyprien Rusu is our Director of Engineering for Asia at OnScale. He has a extensive background in FEM, Technical Marketing, Sales and Support. Cyprien recieved his MS in Civil Engineering from Tsinghua University. At OnScale he is a trusted advisor for our client base in Asia, while creating and providing OnScale training.

Recent Posts:

What are the key performance factors for innovative RF filter design?

In today's smart devices, the RF Front-End (Also called RFFE) represents all the circuitry between High frequency data received from Antennas to near-zero frequency baseband signals.

W. G. Cady: The Father of Modern Piezoelectricity

American physicist and electrical engineer Dr. Walter Guyton Cady (1874–1974) was, during his lifetime, described as the “Father of Modern Piezoelectricity”.

What is an RF Front End (RFFE)?

In current mobile devices, there is a sophisticated circuitry that is responsible for converting information from the near-zero frequency baseband signals used to convey information and data to radio-signals that can be received or transmitted over the air.

What is the Piezoelectric Effect?

Let us provide you with a very simple definition first to get things clear. Certain materials tend to accumulate electric charges when a mechanical stress is applied to it. The piezoelectric effect is an effect that simply describes the fact that a pressure applied to a piezoelectric material will generate a voltage.

A History of the Piezoelectric Effect

In 1880 brothers Pierre Curie and Jacques Curie were working as laboratory assistants at the Faculty of Sciences of Paris. They discovered that applying pressure to crystals such as quartz, tourmaline and Rochelle salt generates electrical charges on the surface of these materials. This conversion of mechanical energy into electrical energy is called the direct piezoelectric effect. “Piezo” is derived from the Greek for “to press”.

Practice: How to Calculate Piezoelectric Material Properties from a Material Datasheet

In Part 1 of this Blog Tutorial we provided a more theoretical example of piezoelectric equations and the important coefficients to know.

Theory: How to Calculate Piezoelectric Material Properties from a Material Datasheet

Obtaining the correct piezoelectric material properties from a manufacturer datasheet and transforming those properties into the correct format for simulation can be a hassle.

OnScale Founder, Andrew Tweedie shares his background in FEA Simulation

We had the chance to interview OnScale Founder and UK Director, Andrew Tweedie to discuss what brought him to FEA Simulation. In this blog post Andrew shares a fascinating insight into how Finite Element Analysis (FEA) simulation can benefit in designing systems that we would never have dreamt possible, however has played a big role in shaping the engineering world we have today. Andrew, can you tell us about your background in engineering and FEA Simulation?

Electromechanical modeling of piezoelectric transducers using time domain finite elements

In this blog post we discuss piezoelectric transducers and the best way to model them with finite element analysis (FEA).

Ultrasonic Sensors 101: How They Work, and How to Simulate Them

In this blog post we discuss how ultrasonic sensors work and how a vibrating piezoelectric disc generates ultrasonic waves. We have also included an interactive demo to show you how to simulate an ultrasonic sensor in OnScale using Finite Element Analysis. An ultrasonic sensor is a system that can emit and receive ultrasonic waves. It is generally used to sense the distance to and from an object. It also belongs to the family of “transducers” because it generates ultrasonic waves from an alternating voltage. Thus, it transforms electrical energy into acoustic energy.

    Related Posts